If you've no account register here first time
User Name :
User Email :
Password :

Login Now

Chiller Plant Optimization Strategies

erpenbeck, eric, fosdick & hilmerHealthcare, commercial, and institutional facilities often use a chiller plant to provide chilled water for air conditioning. It should come as no surprise that chilled water generation is a major contributor to a facility’s utility costs. Organizations are well served to seek ways to optimize their facilities for the best possible performance and energy usage, yet many organizations simply aren’t aware of the full range of chiller plant optimization strategies available to them. This often leads to missed opportunities to save energy and money.

The fact is, there are a range of effective techniques that many organizations never think to leverage – and not all of them are centered on the chiller itself. Let’s take a look at some of the most notable ways facilities with chiller plants can improve their efficiency.

Solutions at the Chiller

One of the most common chiller plant optimization strategies is to retrofit the chiller with variable frequency drives – devices that modulate motors’ electrical frequencies to improve efficiency. This improves the efficiency on any given chiller at reduced loads, but does very little for peak conditions which can be frequent with large systems.

Another consideration that can make a large impact is the capacity at which you’re running your chiller. Ordinarily, the ideal load for maximum chiller efficiency is between 60 and 80 percent of capacity. In addition, loads lower than 50 percent can significantly drop efficiency.

One strategy for improving overall efficiency may seem counterintuitive at first, but it’s proven highly effective for many facilities. By operating multiple chillers near their maximum efficiency points a facility can often improve efficiency over both reduced and peak system demand.

Facility managers who wish to keep their operating strategies as straightforward as possible may not gravitate toward this solution, but for many facilities it can provide truly valuable savings.

Solutions at the Condenser

As we said at the start, though, not all chiller plant optimization strategies center on the chiller. Though small commercial chillers tend to use air cooled condensers to reject waste hear, larger more efficient systems utilize condenser water systems. These condenser systems use pumps and cooling towers to reject heat from the chiller.

A key strategy is to use automated monitoring and system adjustment to achieve the ideal condenser water temperature. The efficiency of the chiller is directly impacted by the condenser water temperature, which is often impacted by weather conditions. When condenser water is on the cooler side – around 60º F (15º C) – the chiller can perform up to 15% more efficiently than at 85º F (29º C).

EHS & Sustainability Journey Infographic
Sponsored By: VelocityEHS

Waste and Climate: Reducing Your Footprint
Sponsored By: Covanta Environmental Solutions

Emerging Technologies in Learning
Sponsored By: UL EHS Sustainability

Powerful Byte - Strategies to Ingest, Digest High-Frequency Data
Sponsored By: Sphera Solutions


Leave a Comment

Translate »