If you've no account register here first time
User Name :
User Email :
Password :

Login Now
coal power plant

How to Reduce Carbon Capture’s Energy Penalty

coal power plantCarbon capture from coal-fired power plants takes energy. So more coal has to be used to get the same amount of power from the plant. Thus reducing the energy demand of carbon capture is vital to making it more attractive.

In a report for the International Energy Agency Clean Coal Centre, Power plant CO2 capture heat integration, Dr. Colin Henderson explores various ways to use the waste heat from carbon capture systems in the power plant and so reduce the energy penalty of carbon capture. Addition of CO2 capture systems can result in up to 30 percent loss of electrical efficiency if there are no integration measures installed, IEA says.

In post-combustion capture, CO2 is scrubbed from the flue gases after they emerge from conventional gas cleaning systems. An amine solution, typically monoethanolamine (MEA) at about 40 degrees Celsius in an absorption column is contacted with the cooled flue gas from the boiler. The CO2-rich solvent is then heated in a separate desorber vessel to release the CO2 and regenerate the solvent for reuse.

Large quantities of steam have to be taken from the main plant to provide heat for this duty. This steam extraction and consequent loss of power from the turbine typically accounts for about two thirds of the overall energy penalty of carbon capture. Power to drive fans, compressors and pumps in the capture systems further reduces net output.

If some of the potential sources of heat from the capture plant are used in the water-steam cycle this will reduce the amount of steam extraction needed and the associated drop in gross power. There are large quantities of waste heat available but their temperatures are not high. The low-grade nature of the heat is the greatest challenge to increasing the effectiveness of its use.

Henderson’s report describes the various different approaches such as adding pressure control valves so that steam arrives at the stripper reboiler at the correct temperature (usually 120 degrees Celsius) and to protect the turbines, particularly at times of variable load. Excess energy in the extracted steam would also be exploited, for example, by using a heat exchanger for LP feedwater heating or a let-down turbine.

Before transport as a supercritical fluid to storage, captured CO2 is compressed to around 11 MPa. This compression is carried out in stages, with cooling in-between to control the working temperature and minimise the energy needed. The heat from this could be suitable for LP feedwater heating. If some of the compressor intercoolers are omitted this will raise the temperature of the recovered waste heat, but means higher power consumption by the compressor.

Real-Time Data as a Foundation to Drive Sustainability Performance
Sponsored By: Sphera Solutions

Six Steps to Navigating EHS & Compliance
Sponsored By: UL EHS Sustainability

Choosing the Correct Emission Control Technology
Sponsored By: Anguil Environmental Systems

Merging Industrial Air and Water Pollution Solutions Provides Better Results, Lower Cost
Sponsored By: Anguil Environmental Systems


Leave a Comment

Translate »